
DTLS based Security and Two-Way Authentication for
the Internet of ThingsI

Thomas Kothmayr,Corinna Schmitt,Wen Hu,Michael Brünig,Georg Carle

Department of Computer Science, Chair for Network Architectures and Services,
Technische Universität München, Germany, {kothmayr,carle}@in.tum.de

CSIRO ICT Centre, Brisbane, Australia, {wen.hu,michael.bruenig}@csiro.au

Communication Systems Group (CSG), Institute for Informatics,
University of Zurich, Switzerland, {schmitt}@ifi.uzh.ch

Abstract

In this paper, we introduce the first fully implemented two-way authen-
tication security scheme for the Internet of Things (IoT) based on exist-
ing Internet standards, specifically the Datagram Transport Layer Secu-
rity (DTLS) protocol. By relying on an established standard, existing im-
plementations, engineering techniques and security infrastructure can be
reused, which enables easy security uptake. Our proposed security scheme
is therefore based on RSA, the most widley used public key cryptography
algorithm. It is designed to work over standard communication stacks that
offer UDP/IPv6 networking for Low power Wireless Personal Area Networks
(6LoWPAN). Our implementation of DTLS is presented in the context of
a system architecture and the scheme’s feasibility (low overheads and high
interoperability) is further demonstrated through extensive evaluation on a
hardware platform suitable for the Internet of Things.

IPart of this work was published at the 7th IEEE International Workshop on Practical
Issues in Building Sensor Network Applications (SenseApp) in conjunction with IEEE
LCN 2012 [1]. The extensions of this work include the analysis of the handshake behaviour
under link layer packet loss (Section 5.2), a comparison with software implementations of
RSA and elliptic curve cryptography (ECC) algorithms (Section 5.4), and a detailed case
study (Section 6). This work was mostly done when Corinna Schmitt was with Technische
Universität München [2].

Preprint submitted to Ad Hoc Networks April 8, 2013

Preprint accepted to Elsevier Journal of AdHoc Networks in May 2013

Journal version: http://dx.doi.org/10.1016/j.adhoc.2013.05.003

1. Introduction

Today, there is a multitude of envisioned and implemented use cases
for the IoT and wireless sensor networks (WSNs). It is desirable, in most
of these scenarios, to also make the data globally accessible to authorized
users and data processing units through the Internet. Naturally, much of
the data collected in these scenarios, such as locations and personal IDs, is
of a sensitive nature. Even seemingly inconspicuous data, such as the energy
consumption measured by a smart meter, can lead to potential infringements
on the users’ privacy, e.g. by allowing an eavesdropper to conclude whether
or not a user is currently at home. From an industry perspective, there is
also a pressing need for security solutions based on standards. The market
research firm Gartner, Inc. states in their report - 2012 Hype Cycle for the
Internet of Things - [3]: ”The Internet of Things concept will take more
than 10 years to reach the Plateau of Productivity - mainly due to security
challenges, privacy policies, data and wireless standards, and the realization
that the Internet of Things requires the build-out of a topology of services,
applications and a connecting infrastructure.” Regarding the infrastructure,
security risks are aggravated by the trend toward a separation of sensor
network infrastructure and applications [4, 5]. Therefore, a true end-to-end
security solution is required to achieve an adequate level of security for the
IoT. Protecting the data once it leaves the scope of the local network is not
enough.

A similar scenario in the traditional computing world would be a user
browsing the Internet over an unsecured WLAN. Attackers in physical prox-
imity of the user can capture the traffic between the user and a web server.
Countermeasures against such attacks include the establishment of a se-
cured connection to the web server via HTTPS, the use of a VPN tunnel
to securely connect to a trusted VPN endpoint and using wireless network
security such as WPA.

These solutions are comparable to security approaches in the IoT area.
Using WPA is similar to the traditional use of link layer encryption. The
VPN solution is equivalent to creating a secure connection between a sensor
node and a security end-point, which may or may not be the final destina-
tion of the sensor data. Establishing a HTTPS connection with the server is
comparable to our approach: We investigate the use of the DTLS protocol
in an end-to-end security architecture for the IoT. DTLS is an adaption of
the widespread TLS protocol, used to secure HTTPS, for unreliable data-
gram transport. By choosing DTLS we have made three high-level design
decisions:

2

Preprint accepted to Elsevier Journal of AdHoc Networks in May 2013

Journal version: http://dx.doi.org/10.1016/j.adhoc.2013.05.003

Implementation of a standards based design: Standardization has
helped the widespread uptake of technologies. Radio chips can rely on IEEE
802.15.4 for the physical and the MAC layer. The IPv6 Routing Protocol
for Low power and Lossy Networks (RPL) or 6LoWPAN provide routing
functionality and CoAP [6] defines the application layer. So far, no such
efforts have addressed security in a wider context for the IoT.

Focus on application-layer end-to-end security: An end-to-end
protocol provides security even if the underlying network infrastructure is
only partially under the user’s control. As the infrastructure for Machine-to-
Machine (M2M) communication is getting increasingly commoditized, this
scenario becomes more likely: The European Telecommunications Standards
Institute (ETSI) is currently developing a standard that focuses on providing
a “horizontal M2M service platform” [5], meaning that it plans to standard-
ize the transport of local device data to a remote data center. For stationary
installations security functionality could be provided by the gateway to the
higher level network. However, such gateways would present a high-value
target for an attacker. If the devices are mobile, for example in an logis-
tics application, there may be no gateway to a provider’s network that is
under the user’s control, similar to how users of smart phones connect di-
rectly to their carrier’s network. Another example that favors end-to-end
security is a multi-tenancy office building that is equipped with a common
infrastructure for metering and climate-control purposes. The tenants share
the infrastructure but are still able to keep their devices’ data private from
other members of the network. Using a protocol like DTLS, which is placed
between transport and application layer, does not require that the infras-
tructure provider supports the security mechanism. It is purely in the hands
of the two communicating applications to establish security. If the security
is provided by a network layer protocol, such as IPsec, the same is true to a
lower degree because the network stacks of both devices must support the
same security protocol.

Support for unreliable transport protocols: Reliable transport
protocols like TCP incur an overhead over simpler, unreliable protocols
such as UDP. Especially for energy starved, battery powered devices this
overhead is often too costly and TCP has been shown to perform poorly in
low-bandwidth scenarios [7]. This is reflected in the design of the emerging
standard CoAP, which uses UDP transport and defines a binding to DTLS
for security [6]. By using DTLS in conjunction with UDP our approach does
not force the application developer to use reliable transport - as would be
the case if TLS would be used. It is still possible to use DTLS over transport
protocols like TCP, since DTLS only assumes unreliable transport.

3

Preprint accepted to Elsevier Journal of AdHoc Networks in May 2013

Journal version: http://dx.doi.org/10.1016/j.adhoc.2013.05.003

This is a weaker property than the reliability provided by TCP. However, the
adaptations of DTLS for unreliable transport introduce additional overhead
when compared to TLS. There might be a benefit in using TCP during the
handshake phase but, as we point out in Section 5.2, the DTLS reliability
mechanism should be adapted to the special requirements of constrained
networks. A study of TCP’s infuence on the handshake is therefore out of
scope of this article.

The rest of the paper is organized as follows: We outline related work,
mainly from the field of security in Wireless Sensor Networks (WSNs), in
Section 2. WSNs are a suitable reference point because they are constrained
in terms of computational power, available memory, energy consumption and
network bandwidth. Section 3 provides the reader with an introduction to
the DTLS protocol before we present our system architecture in Section 4.
In order to assess the feasibility of using DTLS in a constrained environment
we implemented a prototype on a constrained device. We thoroughly evalu-
ate this implementation in Section 5 to identify areas in which the standard
protocol could be modified to better meet the challenges of a WSN envi-
ronment. In Section 6, we show a practical proof of concept in a building
scenario. Our conclusion is given in Section 7.

2. Related Work

Traditionally, security protocols in sensor networks focus on link layer
security, protecting data on a hop-by-hop basis. The simplest approach to
link layer security consists of using a network-wide encryption key, which
often is the case in ZigBee networks [8]. ZigBee also provides support for
cluster and individual link keys. MiniSec [9] is another well known secu-
rity mechanism for WSNs that provides data confidentiality, authentication
and replay protection. As with ZigBee, the packet overhead introduced by
MiniSec is in the order of a few bytes. The widespread TinySec link layer
security mechanism is no longer considered secure [9].

Most security protocols do not include a mechanism for how encryption
keys are distributed to the nodes. Keys are either loaded onto the nodes
before setup or a separate key establishment protocol is used. Public key
cryptography (PKC) is used in traditional computing to facilitate secure
key establishment. However, public key cryptography, in particular the
widespread RSA algorithm, has been considered too resource consuming for
constrained devices. Some security protocols, such as Sizzle [10], advocate
the use of the more resource efficient Elliptic Curve Cryptography (ECC)
public key cryptosystem. Other research efforts, such as the secFleck [11]
mote, provide support for faster RSA operations through hardware.

4

Preprint accepted to Elsevier Journal of AdHoc Networks in May 2013

Journal version: http://dx.doi.org/10.1016/j.adhoc.2013.05.003

Approaches without PKC often rely on the pre-distribution of connection
keys. Random key pre-distribution schemes, such as the q-composite scheme
by Chan et al. [12], establish connections with a node’s neighbors with a
certain probability p < 1. Intuitively, pre-distributed key schemes such
as this require a large amount of keys to be loaded onto the nodes before
deployment. Depending on the method used, this approach is scaling in
O(n2) or O(n) where n is the number of nodes in the network. The Peer
Intermediaries for Key Establishment protocol (PIKE) achieves sub linear
scaling in O(

√
n) by relying on the other nodes as trusted intermediaries.

While PIKE provides higher memory efficiency than random schemes, it still
leaks additional key information when motes are captured.

Recently, more research into end-to-end security protocols for the IoT
and WSNs is being conducted. As outlined in the introduction, such a pro-
tocol protects the message payload from the data source until it reaches
its target. Because end-to-end protocols are usually implemented in the
network or application layer, forwarding nodes do not need to perform any
additional cryptographic operations since the routing information is trans-
mitted in the clear. On the flip side, this means end-to-end security protocols
do not provide the same level of protection of a network’s availability as a
link layer protocol could. One example of an end-to-end security protocol is
Sizzle by Gupta et al. [10]. Sizzle is a compact web server stack providing
HTTP services secured by SSL. It uses 160-bit ECC keys for key establish-
ment which provide a similar level of security as 1024-bit RSA keys. In
contrast to our work, it requires a reliable transport layer which has been
shown to incur large performance penalties in low bandwidth situations [7].
Sizzle also omits two-way authentication: Only the Sizzle enabled node is
authenticated by a remote, more resource rich, client. This is insufficient for
machine to machine communication in the IoT. SSNAIL [13] makes similar
design choices as Sizzle and performs an ECC handshake over reliable TCP
transport. Similar to our implementation, SSNAIL is able to perform a full,
two-way authenticated handshake but it still requires a reliable transport
protocol.

Raza et al. [14] discuss how the IPsec protocol can be integrated into
6LoWPAN, the compressed IPv6 implementation used in most IP-enabled
sensor networks. Their work focuses on how data transfer with IPsec can
be made efficient in the context of 6LoWPAN. Regarding the Internet Key
Exchange protocol (IKE), which is used for key establishment in IPsec net-
works, Raza et al. [15] discuss methods for reducing the headers to make
IKE more suitable for constrained devices, but do not present a performance
analysis alongside their proposal.

5

Preprint accepted to Elsevier Journal of AdHoc Networks in May 2013

Journal version: http://dx.doi.org/10.1016/j.adhoc.2013.05.003

As mentioned in the introduction, CoAP is an application layer standard-
ization effort for the Internet of Things. The current draft specifies a binding
of CoAP to DTLS to achieve security [6]. Another proposal by Raza et al.
aims to reduce the communication overhead of the DTLS headers through
compression [16]. As with the work on IPsec, we are currently not aware
of any publication evaluating the performance of DTLS over 6LoWPAN.
Our work can thus support these efforts by providing a set of real-world
measurements from our DTLS implementation.

3. The Datagram Transport Layer Security protocol

All messages sent via DTLS are prepended with a 13 bytes long DTLS
record header. This header specifies the content of the message (e.g. ap-
plication data or handshake data), the version of the protocol employed,
as well as a 64-bit sequence number and the record length. The top two
bytes of the sequence number are used to specify the epoch of the message
which changes once new encryption parameters have been negotiated be-
tween client and server. Figure 1 shows the DTLS record header in white.
The record header is either followed by the plaintext if no security has been
negotiated yet, or by the DTLS block cipher. If a block cipher is used, the
plaintext is prepended by a random Initialization Vector (IV), which has the
size of the cipher block length. This protects against attacks where attackers
can adaptively choose plaintext. The plaintext is followed by a Hash-based
Message Authentication Code (HMAC) which allows the receiver to detect
if the DTLS record has been altered. Finally, the message is padded to a
multiple of the cipher block length. The area of the message shown in grey
in Figure 1 is encrypted with the block cipher, striped parts are not used to
calculate the HMAC. Unlike TLS, DTLS does not allow for stream ciphers
because they are sensitive to message loss and reordering. Instead, DTLS
uses block ciphers in the Cipher-Block Chaining (CBC) mode of operation.

The key material and cipher suite, consisting of a block cipher and a hash
algorithm, are negotiated between client and server during the handshake
phase which commences before any application data can be transferred.
There are three types of handshake: unauthenticated, server authenticated
and fully authenticated handshakes. During an unauthenticated handshake
neither party authenticates with the other, and during a server authenti-
cated handshake only the server proves its identity to the client. In a fully
authenticated handshake the client has to authenticate itself to the server as
well. In the following we will not consider the unauthenticated handshake
because it provides no authenticity at all.

6

Preprint accepted to Elsevier Journal of AdHoc Networks in May 2013

Journal version: http://dx.doi.org/10.1016/j.adhoc.2013.05.003

C Version Epoch Sequence Nr. Length

Initialization Vector (IV)

0 byte 1684 12

MAC

MAC cont. Padding

Payload

PL

Initialization Vector (IV)

MAC

MAC cont. Padding PL

Figure 1: A DTLS record protected with
CBC block cipher [1].

ClientHello*

ClientHelloVerify*

ClientHello

Finished

ChangeCipherSpec
Finished

Flight 1

Flight 3

Flight 5

Flight 2

Flight 4

Flight 6

ServerHello, Ceritifcate,

[Certificate Request], ServerHello Done

[Certificate], ClientKeyExchange,

[CertificateVerify], ChangeCipherSpec

Client Server

[…] omitted message during server authenticated handshake

encrypted * optional message

Figure 2: A fully authenticated DTLS
Handshake [1, 2].

There are different algorithms that can be used for authentication in a
DTLS handshake. Variants based on ECC have been shown in embedded
networks [10]. Since we argue for a standard-based communication architec-
ture for the IoT to promote interoperability, the rest of the paper will focus
on authentication based on RSA. Because it is today’s dominant PKC sys-
tem [17] a suitable infrastructure for obtaining certificates from commercial
Certificate Authorities (CA) is already in place.

Figure 2 shows a fully authenticated DTLS handshake. Individual mes-
sages are grouped into ‘message flights’ according to their direction and
occurrence sequence. Flight 1 and 2 are an optional feature to protect the
server against Denial-of-Service (DoS) attacks. The client has to prove that
it can receive data as well as send data by resending its ClientHello mes-
sage with the cookie sent in the ClientHelloVerify message by the server.
The ClientHello message contains the protocol version supported by the
client as well as the cipher suites that it supports. The server answers with
its ServerHello message that contains the cipher suite chosen from the list
offered by the client. The server also sends a X.509 certificate to authenti-
cate itself followed by a CertificateRequest message if the server expects
the client to authenticate. The ServerHelloDone message only indicates
the end of flight 4. If requested and supported, the client sends its own
certificate message at the beginning of flight 5. The ClientKeyExchange

message contains half of the pre-master secret encrypted with the server’s
public RSA key from the server’s certificate. The other half of the pre-master
secret was transmitted unprotected in the ServerHello message. The key-
ing material is subsequently derived from the pre-master secret. Since half
of the pre-master secret is encrypted with the server’s public key it can only
complete the handshake if it is in possession of the private key matching the
public key in the server certificate. Accordingly, in the CertificateVerify

message the client authenticates itself by proving that it is in possession of
the private key matching the client’s public key.

7

Preprint accepted to Elsevier Journal of AdHoc Networks in May 2013

Journal version: http://dx.doi.org/10.1016/j.adhoc.2013.05.003

It does this by signing a hashed digest of all previous handshake messages
with its private key. The server can verify this through the public key of the
client. The ChangeCipherSpec message indicates that all following messages
by the client will be encrypted with the negotiated cipher suite and keying
material. The Finished message contains an encrypted message digest of
all previous handshake messages to ensure both parties are indeed operating
based on the same, unaltered, handshake data. The server answers with its
own ChangeCiperSpec and Finished message to complete the handshake.

4. A Standard Based End-to-End Security Architecture

Our system architecture is following the IoT model. We assume that the
Internet is connected by IPv6 in the near future, and parts of it run 6LoW-
PAN. The Transport layer in 6LoWPAN is UDP which can be considered
unreliable, the routing layer is RPL [18] or Hydro [7]. Our implementation
uses Hqydro for routing, because at the time of writing our implementa-
tion code there was no avaliable RPL implementation for TinyOS. RPL has
since been standardized in RFC 6550 and is distributed with newer ver-
sions of TinyOS. However, both routing protocols are similar enough so
that a change should have negligible impact on the presented results. IEEE
802.15.4 is used for the physical and Media Access Control layer. Based
on this protocol stack we chose DTLS as our security protocol which places
it in the application layer on top of the UDP transport layer. Figure 3
summarizes the protocols used in our architecture.

Similar to security needs in traditional networks such as the Internet, we
consider three security goals:

• Authenticity: Recipients of a message can identify their commu-
nication partners and can detect if the sender information has been
forged.

• Integrity: Communication partners can detect changes to a message
during transmission.

• Confidentiality: Attackers cannot gain knowledge about the con-
tents of a secured message.

By choosing DTLS as the security protocol we can achieve these goals.
DTLS is a modification of TLS for the unreliable UDP and inherits its
security properties [19]. Using an application layer security protocol like
DTLS as opposed to link or network layer security protocols such as MiniSec
[9] has a number of advantages but also some drawbacks:

8

Preprint accepted to Elsevier Journal of AdHoc Networks in May 2013

Journal version: http://dx.doi.org/10.1016/j.adhoc.2013.05.003

.

Figure 3: Protocol stack used in our security architecture [1, 2]

Lower layer security protocols do not provide end-to-end communication
security. On each hop in a multi-hop network, data is decrypted on receipt
and re-encrypted for forwarding. An attacker can thus gain access to all
clear text data that passes through a compromised node. Scalability is of-
ten also an issue for these protocols because they need to establish a secured
connection with each of their neighbors to form a mesh network, and crypto-
graphic overhead occurs on each hop. On the other hand, in an end-to-end
security protocol, cryptographic overhead occurs on the sender and receiver
only. Compromised nodes provide an attacker with access to the measure-
ment data from local nodes only. Routing algorithms are also agnostic of
the payload protection, thus even nodes that have not established a secure
connection can be used to forward packets to a subscriber/destination. One
such scenario could be in an office building shared by multiple occupants
(parties): each party subscribes to a part of the sensor readings only and
wishes to keep the data they subscribed to private from other parties, yet
they still may share a common communication network to reduce cost.

However, an application layer security protocol does not protect routing
information. Adversaries can therefore analyze the traffic patterns of a net-
work in clear text. They may even launch a DoS, worm hole, or resource
consumption attack that lowers the availability of the network [20]. In this
paper, we focus on end-to-end communication security, and rely on other
schemes for securing lower communication layers [20].

Scenarios like the one above raise the need for proper authentication
of data publishing devices and access control throughout the network. We
therefore introduce an Access Control server (AC) into our architecture.
The AC is a trusted entity and a more resource-rich server, on which the
access rights for the publishers (=motes) of the secured network are stored.
The identity of a default subscriber is usually preconfigured on a publisher
before it is deployed. If any additional subscribers want to initialize a con-

9

Preprint accepted to Elsevier Journal of AdHoc Networks in May 2013

Journal version: http://dx.doi.org/10.1016/j.adhoc.2013.05.003

nection with the publisher, they first have to obtain an access ticket from
the AC. The AC verifies that the subscriber has the right to access the
information avaliable from the publisher. The publisher then only has to
evaluate the identity of the subscriber and verify the ticket it has received
from the AC. Details of this scenario are subsequently omitted because
they are out of scope of this paper. More details can be found in refer-
ence [2]. This requires a unique identity for a publisher in the network.
In the Internet, identities are usually established via PKC and the iden-
tifiers provided through X.509 certificates. A X.509 certificate contains,
among other information, the public key of an entity and its common name
(e.g. my-bank.com). The certificate is signed by a trusted third party,
called the Certificate Authority (CA), which serves two purposes: Firstly,
the signature allows the receiver to detect modifications to the certificate.
Secondly, it also states that the CA has verified the identity of the entity
that requested the certificate.

Hu et al. showed that RSA, the most commonly used public key algo-
rithm in the Internet, can be used in sensor networks with the assistance of
a Trusted Platform Module (TPM), which costs less than 5% of a common
sensor node [11]. A TPM is an embedded chip that provides tamper proof
generation and storage of RSA keys as well as hardware support for the RSA
algorithm. The certificate of a TPM equipped publisher and the certificate
of a trusted CA must be stored on the publisher prior to deployment. For
publishers that are not equipped with TPM chips we propose authentication
via the DTLS pre-shared key cipher-suite, which requires a small number of
random bytes, from which the actual key is derived, to be preloaded to the
publishers before deployment. This secret must also be made available to
the AC server which will disclose the key to devices with sufficient autho-
rization. Figure 4 provides an overview of the proposed architecture which
is described in detail in references [1] and [2].

Gateway

IPv6
Access Control Server

INTERNET

Certificate Authority

Publisher

Secure
Communication

Communication
Link Data Flow Sensor Node

(e.g. TelosB)
Sensor Node
(e.g. OPAL)

Subscriber

Figure 4: The overview of our proposed system architecture [2].

10

Preprint accepted to Elsevier Journal of AdHoc Networks in May 2013

Journal version: http://dx.doi.org/10.1016/j.adhoc.2013.05.003

5. Evaluation

Previous work has already demonstrated techniques to reduce the pro-
tocol header overhead during data transmission [14] and has proven the fea-
sibility of performing software encryption and hashing on the sensor node
[9], also called mote. Indeed, even for DTLS, first proposals for a com-
pressed header format have been made by Raza et al. recently [16]. Gupta
et al. showed the feasibility of a server authenticated SSL handshake [10].
Therefore, the component of our security architecture that is currently least
understood in the context of the IoT is the fully authenticated DTLS hand-
shake, which includes both client and server authentication.

We have implemented a DTLS client that performs the DTLS hand-
shake with an OpenSSL 1.0.0d server. The client is targeted at the OPAL
sensor node [21] which features an Atmel SAM3U micro-controller and the
Atmel AT97SC3203S TPM. It has 48 kB RAM and the micro-controller
is clocked at 48 MHz in our implementation. In the following sections we
will evaluate our implementation with regards to its performance during the
handshake and data transmission, as well as its energy and memory con-
sumption. Unless otherwise stated, the DTLS cipher suite performed was
TLS-RSA-with-AES-128-CBC-SHA. AES-128 has been shown to be one of
the fastest block ciphers on motes [22] and offers sufficient security. Further-
more, the cipher suite we chose is the required block cipher suite for DTLS
from version 1.2 onwards. Other common cipher suites are either based on
RC4, which is a stream cipher and thus not permitted by DTLS, or 3DES
which is very slow and thus causes a large cryptographic overhead.

5.1. Data transfer latency

In this section we will consider latency as a measure of the system’s
cryptographic performance. Figure 5 shows the round-trip time (RTT) for
different sizes of plaintext data through a single hop network and a multi hop
network with four hops. We measured the timing for the DTLS packets on
the mote. Readings for pure plaintext data without any additional headers
were obtained by issuing the ping6 command on the subscriber.

A packet sent with both a SHA-1 HMAC and AES-128 encryption is
denoted as “AES-128”. The denotation “SHA-1” is used if a packet only
contained a SHA-1 HMAC. The reading for 8 byte plaintext data is missing
because the ICMP-Header and the timestamp sent by ping6 are together
at least 16 byte long.

11

Preprint accepted to Elsevier Journal of AdHoc Networks in May 2013

Journal version: http://dx.doi.org/10.1016/j.adhoc.2013.05.003

0

100

200

300

400

500

600

8 32 64 96 128 160 192 224 255

R
o

u
n

d
-T

ri
p

-T
im

e
 (

m
s
)

Payload Size (bytes)

AES-128 Multihop (4)

AES-128 Single Hop

SHA-1 Multihop (4)

SHA-1 Single Hop

Ping Multihop (4)

Ping Single Hop

Figure 5: Average (n=100) packet round-trip time for different plaintext sizes [1]

The chart shows a linear increase of round-trip time with jumps occurring
approximately every 100 bytes. These spikes can be attributed to the 128
byte maximum link layer frame size defined by IEEE 802.15.4 which includes
header and trailer. These jumps occur earlier when sending DTLS protected
packets due to the additional DTLS packet headers, the HMAC size and the
explicit Initialization Vector in each packet. See Section 3 for more details
on the packet structure.

Both the increased packet size and processing overhead lead to an in-
creased end-to-end transmission latency for DTLS packets compared to
plaintext packets. In the single hop scenario, transmission latency was in-
creased by up to 95 ms for AES-128 and up to 75 ms for SHA-1 encryption
which were an average increase of 62% and 35% respectively over the plain-
text case. In the multi hop scenario, round trip times increased by a max-
imum of 163 ms and were 74% longer on average for AES-128 encrypted
packets. Packets with a SHA-1 HMAC took up to 129 ms longer for the
round-trip with an average of 40% more time being spent. The decreased
performance for transmission latency is mostly due to the large packet over-
head of up to 64 bytes which consists of 13 byte DTLS record header, 16
byte Initialization Vector, 20 byte HMAC, and up to 15 byte padding. Cal-
culating a SHA-1 hash of a 255 byte plaintext message only takes 9 ms,
encryption with AES-128 takes another 12 ms. Both operations do not con-
tribute significantly to the overall transmission latency. This is consistent
with the measurements for 16-byte plaintext (RTT of 58 ms) which increases
to 90 ms with AES-128. Including the overhead of the DTLS record format,
16 plaintext bytes are expanded to a 77 byte message. Sending 80 bytes via
ping requires 78 ms which indicates a computational overhead of around 12
ms in this case. A more detailed analysis of the transmission overhead from
an energy perspective is provided in Section 5.4.

12

Preprint accepted to Elsevier Journal of AdHoc Networks in May 2013

Journal version: http://dx.doi.org/10.1016/j.adhoc.2013.05.003

5.2. Handshake latency
Another performance indicator to consider is the latency introduced by

performing a DTLS handshake. We measured the time from the beginning
of the handshake establishment until a Finished message has been received
on the client. In addition to using a 2048-bit key, we included the results
for a 1024-bit key for comparison. Figure 6 shows the average latency for
a fully authenticated and a server authenticated handshake. We conducted
15 measurements for each type of handshake. The bars show the average
over these measurements, and the error bars show the standard deviation.

The large standard deviation is caused by our implementation behav-
ior when message loss occurs. DTLS states that an implementation should
wait for an answer for a set amount of time after sending a flight of mes-
sages. If it does not receive an answer during this period it retransmits the
whole flight. We set this timeout value to 5 seconds to avoid unnecessary
retransmissions in networks with a high end-to-end delay, which is common
in a low power lossy network, and/or with energy limited thin clients that
are slow to respond. DTLS implementations for the Internet often choose
a retransmission timeout of one second or less. In general, we see that the
time to execute a handshake is shorter for smaller RSA-keys and reduced by
almost two seconds when client authentication is omitted in the handshake.
We observed packet loss mainly in a multi-hop environment and when larger
DTLS messages were being sent. This increases the total handshake time
significantly because of the large DTLS retransmission timeout. However,
total energy consumption of the client does not increase significantly because
all TPM operations, which are the largest contributor to overall handshake
energy costs (cf. Section 5.4), are only executed after successful receipt of all
relevant server messages. Losing a packet with information obtained from
the TPM does not lead to a repeated execution of the TPM operations be-
cause the resulting messages are buffered and can be retransmitted. During
our experiments we did not see any failed handshake attempts. In earlier
stages of development a lost Finished message from the server would cause
the handshake to fail.

The client did not receive the expected Finished message and kept re-
transmitting its last message flight. The server, however, already considered
the handshake to be complete and was waiting for bulk data transfer from
the client, disregarding its repeated retransmissions of the handshake mes-
sages. DTLS 1.2 addresses this issue by always issuing a retransmission of
the server’s last message flight when it receives a Finished message from
the client. We ported this behavior to our version of OpenSSL to address
this problem.

13

Preprint accepted to Elsevier Journal of AdHoc Networks in May 2013

Journal version: http://dx.doi.org/10.1016/j.adhoc.2013.05.003

4
,0

0
0

 m
s

3
,7

8
3

 m
s

2
,2

9
3

 m
s

1
,8

7
5

 m
s

6
,2

1
9

 m
s

4
,3

7
4

 m
s

3
,7

2
9

 m
s

2
,7

7
8

 m
s

6
,6

2
7

 m
s

4
,7

9
1

 m
s

3
,8

6
9

 m
s

2
,8

7
0

 m
s

0 s

1 s

2 s

3 s

4 s

5 s

6 s

7 s

8 s

9 s

10 s

2048-bit fully
authenticated

1024-bit fully
authenticated

2048-bit server
authenticated

1024-bit server
authenticated

A
v
e

ra
g

e

h
a

n
d

s
h

a
k

e
 t

im
e

 (
n

=
1
5

)

Single-hop

Multi-hop (4)

Multi-hop (6)

Figure 6: Time to complete different types of DTLS handshakes [1].

DTLS requires successful transmission of all handshake packets over an
unreliable transport layer. Since it provides its own reliability mechanism
during the handshake, network topology, congestion and link quality have a
large impact on the time needed to complete a DTLS handshake. One pa-
rameter the programmer can influence to achieve better performance in lossy
networks is the maximum transmission unit (MTU) for DTLS handshake
packets which determines the size of individual handshake packet fragments.
To study the influence of the MTU on overall handshake establishment time
we introduced a random, artificial packet drop rate on the link layer and
measured handshake completion times for various MTUs.

Figure 7 shows that even a small amount of packet loss has a large
impact on overall handshake completion time. We consider each link layer
packet to have an independent chance of being dropped, resulting in the
total loss of all packets that follow. If we take a typical, fully authenticated
DTLS handshake which causes 2,438 bytes of traffic as an example, there
is a 72.26%1 chance of packet loss while transmitting the 2,438 bytes of
handshake payload at 5% link layer packet loss. If the link layer packet loss
rate is 10%, there is a 92.82%2 chance of packet loss occurring. In that case,
the DTLS reliability mechanism is waiting for a timeout before resending
the whole message flight [19]. As before, the retransmission timer was set
to 5 seconds during our experiments.

1P (Packetloss) = 1− 0.95
d 2,438bytes

100bytes
e

= 0.7226
2P (Packetloss) = 1− 0.90

d 2,438bytes
100bytes

e
= 0.9282

14

Preprint accepted to Elsevier Journal of AdHoc Networks in May 2013

Journal version: http://dx.doi.org/10.1016/j.adhoc.2013.05.003

4
.8

5
1
 m

s

2
0

.6
9

2
 m

s

3
2

.6
7

8
 m

s

5
.5

9
4

 m
s

2
0

.4
2

0
 m

s

3
2

.0
1
9

 m
s

3
,6

9
9

2
0

.7
1

7
 m

s

3
0

.4
9

6
 m

s

4
,4

2
4

1
9

.5
6

0
 m

s

3
2

.8
9
7

 m
s

3
,5

4
7

1
6

.0
2

9
 m

s

2
5

.9
3

1
 m

s

3
,9

2
6

1
9

.4
1

6
 m

s

3
1

.2
8
4

 m
s

3
,1

7
4

1
7

.5
7

8
 m

s

2
9

.2
6

2
 m

s

3
,5

9
9

2
0

.1
5

7
 m

s

3
4

.7
6
0

 m
s

0 ms

5.000 ms

10.000 ms

15.000 ms

20.000 ms

25.000 ms

30.000 ms

35.000 ms

40.000 ms

1024-bit,
0% loss

1024-bit,
5% loss

1024-bit,
10% loss

2048-bit,
0% loss

2048-bit,
5% loss

2048-bit,
10% loss

A
v
g

.
H

a
n

d
s

h
a

k
e

 c
o

m
p

le
ti

o
n

 T
im

e
 (

n
=

2
5

)

128-byte MTU

256-byte MTU

512-byte MTU

1024-byte MTU

Figure 7: Handshake completion times with various amounts of artificial link layer packet
loss and different MTUs.

We are considering uncorrelated packet loss in this evaluation, even
tough packet loss is correlated in reality. The reasoning behind these figures
is that we cannot know at which time during the handshake the interference
that causes packet loss will start. We therefore use a constant probability of
packet loss, which will cause all following fragments of the current message
flight to be dropped. Additional, correlated packet loss before the next re-
transmission intervall has no adverse impact because the damage is already
done.

The MTU influences the granularity at which handshake messages can be
reassembled by the receiver. A small MTU splits large handshake messages
into many different packets, allowing the receiver a fine grained reassembly
if packets are lost. Since every new packet has to bear the DTLS header, the
overall amount of traffic increases, which in turn increases the probability of
packet loss. A larger MTU splits messages into fewer packets which reduces
the probability of packet loss because there is less network traffic. However,
if packet loss does occur, reassembly cannot be done as fine grained as with
a smaller MTU. Figure 7 shows that a MTU of 512 bytes seems to strike the
best balance between reassembly and network traffic in our experiments.

5.3. Memory

In order to determine the static memory allocation to individual compo-
nents of our implementation we analyzed the entries in the symbols table of
the OPAL binary after compilation. Memory has been measured for a fully
authenticated handshake with 2048-bit RSA keys. This type of handshake
has the largest memory requirements since it needs more code and buffer

15

Preprint accepted to Elsevier Journal of AdHoc Networks in May 2013

Journal version: http://dx.doi.org/10.1016/j.adhoc.2013.05.003

space for the client’s Certificate and CertificateVerify messages. We
divide the memory consumption into six, respectively seven categories as
illustrated in Table 1. Additionally we measured the maximum stack size
by filling the stack with a dummy variable directly after boot and analyzing
how much of that continuous memory block had been overwritten after a
successful DTLS handshake. The first subtotal of Table 1 only considers
static memory allocation. Because it currently contributes a significant por-
tion of overall stack use, we have implemented two prototypical methods of
initializing the client certificate. The method represented by “Stack Mini-
mum” directly sets each individual Byte of the outgoing message buffer to
the matching value from the Certificate. The drawback is a increased ROM
use because the code basically contains hundereds of statements in the form
buffer[x] = 0xff. The “Stack Maximum” method initializes the outgo-
ing message buffer from a temporary array which is filled from a hardcoded,
anonymous array, e.g. uint8 t[CERT LEN] = {0xff, 0xff, 0xff, ...}.
In production the certificate would usually be read from the mote’s flash
memory which should fall somewhere in between the figures from these two
approaches.

RAM (bytes) ROM (bytes)

Cryptography 541 10,838

DTLS Messages 1,174 2,568

DTLS Network 4,294 5,672

TPM 4,321 4,928

BLIP 6,352 9,298

Application 166 -

System 991 30,075

Total Data + BSS 17,839 63,379

Stack Minimum 1,098 0

Stack Maximum 2,300 3,936

Total 18,937 - 20,139 63,379 - 67,315

Table 1: RAM and ROM usage by component [1, 2].

In total approximately 20 kB of RAM and 67 kB of ROM is required
for the implementation. The BLIP implementation requires most of the
resources, followed by TPM drivers and DTLS networking code. Overall,
the implementation is still below the 48 kB of RAM and 256 kB of program
memory provided by OPAL [1, 2].

5.4. Energy consumption

We measured the energy consumption during the handshake phase across
a 10Ω resistor with an oscilloscope. This yielded a value for the electric po-
tential which can be converted into a value for the current draw by dividing
it through the value of the resistance (10Ω).

16

Preprint accepted to Elsevier Journal of AdHoc Networks in May 2013

Journal version: http://dx.doi.org/10.1016/j.adhoc.2013.05.003

The energy costs can then be calculated as
Uprobe

R × t×Ubattery. Uprobe is the
measured voltage, R = 10Ω is the value of the resistor, t is the transaction
time, and Ubattery = 3.998V is the battery voltage. Table 2 shows the en-
ergy consumption during a typical execution of different handshake types.
We use a 2048-bit RSA key because 1024-bit keys are not recommended
for future deployments [23]. Values for current draw in Table 2 specify the
amount that each component contributes to the total current draw. Figure 8
shows a capture from the oscilloscope for a 2048-bit RSA fully authenticated
handshake. [1, 2]

Current Fully authenticated handshake Server authenticated handshake

Computation 30 mA 35 ms, 4.18 mJ 33 ms, 3.95 mJ
Radio TX 18 mA 242 ms, 17.4 mJ 70 ms, 5.03 mJ
TPM Start 52.2 mA 836 ms, 174.46 mJ 836 ms, 174.5 mJ
TPM TWI 43.6 mA 688 ms, 120.0 mJ 476 ms, 83.0 mJ
TPM Verify 51.8 mA 59 ms, 12.2 mJ 56 ms, 11.6 mJ

TPM Encrypt 51.8 mA 39 ms, 8.07 mJ 40 ms, 8.28 mJ
TPM Sign 52.2 mA 726 ms, 151.5 mJ -

Total minimum 487.8 mJ 286.4 mJ

CPU idle 11.4 mA 3965 ms, 180.7 mJ 2265 ms, 103.2 mJ
Radio idle 18 mA 3758 ms, 270.4 mJ 2228 ms, 160.3 mJ

Total 939.0 mJ 549.9 mJ

.

Table 2: Transaction time / energy consumption of DTLS handshake (2048-bit key) [1, 2]

We chose to neglect the contribution of the radio and micro-controller
in further discussion, which have been marked as ‘CPU idle’ and ‘Radio
idle’ in Table 2. Both can be considerably reduced by using power saving
techniques, e.g. by using the TinyOS Low Power Listening (LPL) Media
Access Control layer for the radio (less than 1% radio duty cycles have
been reported by the literature repeatedly), and setting the micro-controller
into a lower power state where it consumes less than 15 µA for SAM3U3.
However, the transmission costs of messages increases significantly if LPL is
activated. This tradeoff is subject to the design and configuration of each
deployed network. For better comparison we view the idle energy use as
outside of our field of control and focus on the energy costs which will ocurr
in any case. Sending messages (‘Radio TX’) and performing cryptographic
operations (‘Computation’) contribute very little to the overall energy costs
that are directly dependent on our DTLS implementation. The total cost is
then largely bound by the energy usage of the TPM.

3ATMEL, Datasheet SAM3U Series: http://www.atmel.com/Images/doc6430.pdf

17

Preprint accepted to Elsevier Journal of AdHoc Networks in May 2013

Journal version: http://dx.doi.org/10.1016/j.adhoc.2013.05.003

0

20

40

60

80

100

0 1 2 3 4 5

C
u

rr
e

n
t

D
ra

w
 (

m
A

)

Measurement Time (s)

Handshake Start

(Radio On, LEDs Off)

Handshake

Done

(Radio Off, LEDs On)

TPM Start

TPM Verify

TPM

Encrypt

TPM Sign

Send

Flight 4
Receive

Flight 3

TPM Off, Radio On

Microcontroller

+ 3 LEDs

Radio Off

.
Figure 8: Current draw for a fully authenticated DTLS handshake [1, 2]

As can be seen in Figure 8, ‘TPM Start’ and ‘TPM Sign’ are the longest
consecutive operations. The TPM is performing an operation with its RSA
private key in ‘TPM Sign’ which is more complex than that with a RSA
public-key. During the ‘TPM Start’ phase the TPM performs a series of
internal self tests to detect tampering and unauthorized commands. The
second large block is ‘TPM TWI’ which describes the amount of time that
is spent passing data to the TPM and receiving data from it via the TWI
bus clocked at 100 kHz. It shows as a lower current draw in Figure 8. It can
be seen directly after the end of the ‘TPM Start’ sequence and before the
short spike in ‘TPM Verify’. The spike is the actual verification operation
performed by the TPM. Similarly, the actual ‘TPM Encrypt’ operation is the
spike that follows another section of data transfer on the TWI bus. During
‘TPM Verify’ the TPM uses the stored key of a CA to verify the server
certificate presented during the handshake. The ‘TPM Encrypt’ operation
is used to encrypt a nonce with the server’s public key. If the mote is
expected to authenticate itself during the handshake, it performs a ‘TPM
Sign’ operation to sign a hash over all previous handshake messages with it’s
RSA private key. Since a server authenticated handshake does not require
the expensive ‘TPM Sign’ operation it uses significantly less energy but also
provides weaker overall authentication since an attacker could impersonate
a mote toward the server. Communication time is also shorter since the
sensor node does not send its certificate. [1, 2]

18

Preprint accepted to Elsevier Journal of AdHoc Networks in May 2013

Journal version: http://dx.doi.org/10.1016/j.adhoc.2013.05.003

If the mote is powered by two AA 2,800-mAh batteries, they have an
energy of approximately 30,240 Joule. If 5% of the energy is used for DTLS
handshakes for (re)keying purposes, which happen once per day, it could
last for more than 8.5 years for a fully authenticated handshake at 487.8 mJ
each, or more than 14.5 years for a server authenticated handshake at 286.4
mJ each. As stated earlier, the calculation of a SHA-1 hash for 255 bytes
takes 9 ms and encryption with AES-128 another 12 ms. Given the current
draw for computation of 30 mA at 48 MHz clock speed from Table 2, this
results in the order of 9.9 µJ per Byte. [1, 2]

The energy consumption after the completion of the handshake is closely
related to the latency values from Figure 6 which portrait the influence of
the network and processing overhead introduced by DTLS. The increase
in latency naturally also leads to an increase in energy consumption, since
the radio has to be held in the transmitting state for longer, preventing it
from entering a sleep state. Figure 9 shows the overhead in percent that
occurs when a plaintext of a given size is encrypted and sent in a secure
DTLS record. The baseline for this comparison is the time it would take
to send the plaintext without any additional headers or other meta data.

5
10
15
20

40

60

80

100

120

8 16 32 48 64 80 96 112 128 160 192 224 255

N
e

tw
o

rk
-e

n
e

rg
y

 o
v

e
rh

e
a

d
 i
n

 %

Plaintext size in bytes

AES-128 GCM

Raza’s header compression

AES-128 CBC

No header compression

Figure 9: Network energy overhead caused by the DTLS record format.

We assume that the energy cost to send a message with length x via BLIP
follows a discontinuous piecewise linear function: c(x, a, b) = d x

100e∗a+x∗b.
Here, a represents the amount of energy needed to access the medium for
one IEEE 802.15.4 message and sending the preamble and all other fixed
energy costs for one message. The energy required for transmitting one
byte of payload without the fixed costs is represented by b. The constant
100 is the maximum link layer message length defined by BLIP. Since we are
only interested in the relative overhead, we ignore the current draw and only

19

Preprint accepted to Elsevier Journal of AdHoc Networks in May 2013

Journal version: http://dx.doi.org/10.1016/j.adhoc.2013.05.003

analyze the relation between message length and time. For this purpose we
used the round-trip times measured in Figure 6 for a simple ping and divided
them by two. We then used Matlab to find the minimum of our error function
err(a, b) =

∑
x∈M ‖

c(x,a,b)−t(x)
x ‖ where M is the set of plaintext lengths for

which we have obtained measurement times and t(x) returns the measured
time for a plaintext length x. This optimization returned a = 27.368 and
b = 0.072. With these results we could then calculate the approximate time
required to send plaintext and larger DTLS records for the same amount of
plaintext.

Figure 9 shows that the overhead introduced by the DTLS record format
is under 17% for small plaintext lengths. It raises to over 100% when the
DTLS record won’t fit into a single link-layer packet anymore. BLIP then
has to fragment the packet and bear the expensive medium access a second
time. One way to reduce the network overhead is reducing the size of DTLS
records. Our proposal is to employ the header compression detailed by Raza
et al. [16]. This reduces the size of a DTLS record header from 13 to 5 bytes.
Further savings are possible if the block cipher mode of operation is changed
from CBC to Galouis/Counter mode of operation (GCM). The plaintext
encrypted by GCM will always lead to a ciphertext of the same length [24].
Since GCM belongs to the class of block cipher modes called Authenticated
Encryption with Associated Data (AEAD) the SHA-1 HMAC is no longer
necessary. Instead, GCM can be used directly to authenticate the data and
associated headers. The 20 byte SHA-1 HMAC is thus replaced by the
maximum length GCM auth tag which requires 16 bytes. Additionally, the
explicit IV of Figure 1 is no longer necessary because GCM is not susceptible
to the vulnerability that makes the IV necessary. The maximum DTLS
record overhead can thus be reduced from 64 bytes down to 21 bytes: Five
bytes for the compressed record header plus the 16 byte GCM auth tag.
Figure 9 shows that this more than doubles the area in which a DTLS
record only incurs little overhead over sending the plaintext directly.

Current Computation time Energy consumption

RSA - Public Key @ 48 MHz 30 mA 440 ms 52.8 mJ

RSA - Private Key (high memory) @ 48 MHz 30 mA 4,725 ms 566.7 mJ

RSA - Private Key (low memory) @ 48 MHz 30 mA 14,895 ms 1,786 mJ

Handshake RSA total @ 48 MHz 30 mA 5,165 ms 619.5 mJ

RSA - Public Key @ 96 MHz 48 mA 221 ms 42.4 mJ

RSA - Private Key (high memory) @ 96 MHz 48 mA 2,362 ms 453.3 mJ

RSA - Private Key (low memory) @ 96 MHz 48 mA 7,447 ms 1,429 mJ

Handshake RSA total @ 96 MHz 48 mA 2,583 ms 495.7 mJ

Table 3: Software RSA (2048-bit key) on OPAL. One Private Key and two Public Key
operations are required for a handshake.

20

Preprint accepted to Elsevier Journal of AdHoc Networks in May 2013

Journal version: http://dx.doi.org/10.1016/j.adhoc.2013.05.003

In order to put the TPM energy consumption and processing time in
context, we also performed measurements of RSA and ECC in software. The
RSA and ECC TinyOS modules available to us did not support 2048-bit RSA
keys or their respective ECC equivalent. We therefore ported the RSA and
ECC implementation of the open source project CyaSSL4 to TinyOS. This
port includes many of the optimization techniques adopted in TinyECC [25],
such as Barrett Reduction, Sliding Window multiplication, Shamir’s Trick
and others. It does not, however, include inline assembly instructions to
speed up natural number operations. Our implementation is made available
to the TinyOS community under the GPLv2 license5. Table 3 shows the
results for individual RSA operations with a 2048-bit RSA key performed
in software. The figures for the handshake only pertain to the DTLS client,
as was the case in our previous evaluations.

With a clock speed of 48 MHz, the software implementation requires
more than twice as much time as the TPM and almost 1.5 times the amount
of energy. The respective values for the TPM where 2,348 ms and 466.2 mJ.
This advantage is dimished when the TPM is compared to software RSA
being performed at 96 MHz, where both require roughly the same amount of
time and energy. The RSA implementation still has room for improvement
through embedded Assembler code and could thus be made more time and
energy efficient than the TPM on our platform. However, the TPM still
provides secure storage of the RSA-key, which cannot be achieved by soft-
ware means, and the implementation complexity and RAM requirements of
the TPM drivers are far less than those of a software RSA implementation.
Additionally, newer versions of our TPM chip have more than halved the
computation time for 2048-bit RSA keys.

Current Computation time Energy consumption

EC-DH @ 48 MHz 30 mA 387 ms 46.4 mJ

ECDSA sign @ 48 MHz 30 mA 432 ms 51.8 mJ

ECDSA verify @ 48 MHz 30 mA 795 ms 95.4 mJ

Handshake ECC total @ 48 MHz 30 mA 1,614 ms 193.6 mJ

EC-DH @ 96 MHz 48 mA 187 ms 35.8 mJ

ECDSA sign @ 96 MHz 48 mA 205 ms 39.3 mJ

ECDSA verify @ 96 MHz 48 mA 380 ms 72.9 mJ

Handshake ECC total @ 96 MHz 48 mA 772 ms 92.6 mJ

Table 4: Software ECC over 224-bit prime curve (secp224r1) on OPAL. One of each
operation is required for a handshake.

4Embedded SSL Library: http://www.yassl.com/yaSSL/Products-cyassl.html
5Source: http://www-db.in.tum.de/~kothmayr/tinypkc

21

Preprint accepted to Elsevier Journal of AdHoc Networks in May 2013

Journal version: http://dx.doi.org/10.1016/j.adhoc.2013.05.003

If secure storage of a mote’s private key is not a design goal, we rec-
ommend a software implementation of ECC instead. As Table 4 shows, it
requires far less time and energy than either solution for RSA. The figures
given were computed over the NIST named curve secp224r1, also known as
NIST P-224. It provides equivalent security to a 2048-bit RSA key.
The operations performed during the DTLS handshake are Elliptic Curve
Diffie-Hellman (EC-DH) for key-agreement followed by a two-way authenti-
cation via the Elliptic Curve Digital Signature Algorithm (ECDSA) to avoid
Man-in-the-Middle attacks.

6. Case Study

In the department of Computer Science at the Technische Universität
München the TinyIPFIX protocol was developed in order to support an
efficient data transmission in a wireless sensor network with constrained
hardware. One of the application scenarios is building automation where
different environmental data, such as temperature, sound, light, and humid-
ity, is monitored [2].

IRIS with mts300 or mts400 S

Nodes with data collection purpose:

TelosB with activated sensors T

T

T

S

S
S

T

S

S
S

S
S

S

S

Gateway (TelosB)

TelosB with aggregation purpose

2232 2270 1104
2222

1108 2250

1105

2243

1102 1106 11101107

11011103

X

X Opal

12

Figure 10: Deployed wireless sensor network at the Computer Science Department [2].

The TinyIPFIX protocol is based on the IETF Standard IPFIX which
was developed for monitoring in large Peer-to-Peer networks. It is interesting
for sensor networks because it is easy to parse and has a high transmission
efficiency and little overhead due to its push-protocol characteristic and
its template-based design [26]. In sensor networks the data is measured
periodically in pre-defined intervals and often processed and aggregated in
the network in order to save network traffic on the way to the data sink.

22

Preprint accepted to Elsevier Journal of AdHoc Networks in May 2013

Journal version: http://dx.doi.org/10.1016/j.adhoc.2013.05.003

TinyIPFIX supports these properties and is described in detail in references
[26] and [2]. In order to provide more security, the established wireless sensor
network was extended by sensor hardware performing DTLS security. As
before, we chose the OPAL node [21].

The TinyIPFIX protocol introduced earlier is included on the application
layer in the performed solution of the department, which allows an indepen-
dent functionality to the underlying layers. Thus, it is straightforward to
integrate a DTLS solution into the network while still using TinyIPFIX as
the application protocol of choice. However, our current implementation
requires more resources than smaller motes, such as the TelosB mote, have
to offer. Thus, the network is subdivided into clusters where the OPAL
node works as a cluster head. It can also perform the in-network message
aggregation to reduce network overhead.

D
T

L
S

h
a

n
d

s
h

a
k

e

m
e

s
s

a
g

e
s

Data transmission

via secure connection

Data transmission

via insecure

connection using

UDP

Figure 11: Snap shot of the communication in the WSN performing DTLS [2].

23

Preprint accepted to Elsevier Journal of AdHoc Networks in May 2013

Journal version: http://dx.doi.org/10.1016/j.adhoc.2013.05.003

Figure 11 shows a Wireshark snap shot of the afore mentioned network.
At the beginning, the OPAL node performs a DTLS handshake (marked
in black) with the data sink in order to establish a secure channel. Af-
ter the successful handshake messages transmitted via UDP are recorded.
In this phase the clusterhead (IP = fec0::c) has not yet bound the data
collectors (IP = {fec0::44f,fec::44e,fec::450}) to itself. As Figure 10 shows,
the network consists of 15 nodes in total with three free data collectors. In
the presented deployment, the OPAL node performs message aggregation
with degree two, meaning it aggregates two incoming data messages into
one outgoing message. As the Wireshark snap shot shows, the nodes with
IP fec0::450 and fec0::44e win the competition and from recorded message
no.60, respectively no.62, onwards they are connected to the clusterhead
and can transmit their data via the DTLS secured channel. The node with
IP fec0::44f still uses an unsecured UDP connection to the global data sink
(marked in orange) [2].

7. Conclusion

We have introduced a standard based security architecture with two-way
authentication for the IoT. The authentication is performed during a fully
authenticated DTLS handshake and based on an exchange of X.509 certifi-
cates containing RSA keys. The extensive evaluation, based on real IoT
systems, shows that our proposed architecture provides message integrity,
confidentiality and authenticity with affordable energy, end-to-end latency
and memory overhead. This shows that DTLS is a feasible security so-
lution for the emerging IoT. We consider a fully authenticated handshake
with strong security through 2048-bit RSA keys feasible for sensor nodes
equipped with a TPM chip, since a fully authenticated, RSA based hand-
shake consumes as little as 488 mJ. The memory requirement of under 20
kB RAM are well below the 48 kB of memory offered by our sensor node.
Sensor nodes without a TPM chip forego protection against physical tam-
pering, but can still perform a DTLS handshake based on ECC which could
be performed on our platform with little more than 100 mJ of energy usage.
Previous work has demonstrated techniques to minimize packet headers for
similar protocols [14]. We plan to apply these techniques to DTLS in fu-
ture work together with an Authenticated Encryption with Associated Data
(AEAD) mode of operation to achieve the reduction in network overhead
we have outlined in Section 5.4. Another focus will be the inclusion of more
constrained nodes without a TPM in our architecture, for which we plan to
use a variant of the DTLS pre-shared key cipher suites.

24

Preprint accepted to Elsevier Journal of AdHoc Networks in May 2013

Journal version: http://dx.doi.org/10.1016/j.adhoc.2013.05.003

8. Acknowledgement

This presented work was supported by two projects partly funded by the
German Federal Ministry of Education and Research: the SODA project
under grant agreement no. 01IS09040A and the AutHoNe project under
grant agreement no. 01BN070[2-5].

[1] T. Kothmayr, C. Schmitt, W. Hu, M. Brünig, G. Carle, A DTLS Based
End-To-End Security Architecture for the Internet of Things with Two-
Way Authentication, in: Proceedings of the 37th IEEE Conference on
Local Computer Networks, LCN, 2012.

[2] C. Schmitt, Secure Data Transmission in Wireless Sensor Networks,
Ph.D. thesis, Technische Universität München, Department of Com-
puter Science (February 2013).

[3] H. LeHong, Hype Cycle for the Internet of Things, 2012, Tech. rep.,
Gartner Inc. (2012).

[4] I. Leontiadis, C. Efstratiou, C. Mascolo, J. Crowcroft, SenShare: Trans-
forming Sensor Networks into Multi-application Sensing Infrastruc-
tures, in: Wireless Sensor Networks, Vol. 7158 of Lecture Notes in
Computer Science, Springer Berlin / Heidelberg, 2012, pp. 65–81.

[5] ETSI TR 102681, Machine-to-Machine Communications (M2M); Smart
Metering Use Cases, http://www.etsi.org (May 2010).

[6] Z. Shelby, K. Hartke, C. Bormann, B. Frank, Constrained Application
Protocol (CoAP), IETF draft, RFC Editor (March 2013).
URL http://tools.ietf.org/html/draft-ietf-core-coap-14

[7] S. Dawson-Haggerty, A. Tavakoli, D. Culler, Hydro: A Hybrid Routing
Protocol for Low-Power and Lossy Networks, in: Proceedings of the
1st IEEE International Conference on Smart Grid Communications,
SmartGridComm, 2010, pp. 268–273.

[8] D. Raymond, S. Midkiff, Denial-of-Service in Wireless Sensor Networks:
Attacks and Defenses, Pervasive Computing 7 (1) (2008) 74 – 81.

[9] M. Luk, G. Mezzour, A. Perrig, V. Gligor, MiniSec: A Secure Sensor
Network Communication Architecture, in: Proceedings of the 6th In-
ternational Conference on Information Processing in Sensor Networks,
IPSN, 2007, pp. 479–488.

25

Preprint accepted to Elsevier Journal of AdHoc Networks in May 2013

Journal version: http://dx.doi.org/10.1016/j.adhoc.2013.05.003

[10] V. Gupta, M. Wurm, Y. Zhu, M. Millard, S. Fung, N. Gura, H. Eberle,
S. C. Shantz, Sizzle: A Standards-based End-to-End Security Archi-
tecture for the Embedded Internet, Pervasive Mob. Comput. 1 (2005)
425–445.

[11] W. Hu, H. Tan, P. Corke, W. C. Shih, S. Jha, Toward Trusted Wireless
Sensor Networks, ACM Transactions on Sensor Networks 7 (2010) 5:1–
5:25.

[12] H. Chan, A. Perrig, D. Song, Random Key Predistribution Schemes
for Sensor Networks, in: Proceedings of Symposium on Security and
Privacy, 2003, pp. 197–213.

[13] W. Jung, S. Hong, M. Ha, Y.-J. Kim, D. Kim, SSL-Based Lightweight
Security of IP-Based Wireless Sensor Networks, International Confer-
ence on Advanced Information Networking and Applications Workshops
(2009) 1112–1117.

[14] S. Raza, T. Voigt, U. Roedig, 6LoWPAN Extension for IPsec, in: Pro-
ceedings of the Interconnecting Smart Objects with the Internet Work-
shop, 2011.

[15] S. Raza, T. Voigt, V. Jutvik, Lightweight IKEv2: A Key Management
Solution for both the Compressed IPsec and the IEEE 802.15.4 Security,
in: Proceedings of the IETF Workshop on Smart Object Security, 2012.

[16] S. Raza, D. Trabalza, T. Voigt, 6LoWPAN Compressed DTLS for
CoAP, in: Proceedings of the 8th IEEE International Conference on
Distributed Computing in Sensor Systems, 2012.

[17] R. Watro, D. Kong, S. Cuti, C. Gardiner, C. Lynn, P. Kruus, TinyPK:
Securing Sensor Networks with Public Key Technology, in: Proceedings
of the 2nd ACM Workshop on Security of Ad Hoc and Sensor Networks,
SASN, 2004, pp. 59–64.

[18] T. Winter, P. Thubert, A. Brandt, J. Hui, R. Kelsey, P. Levis, K. Pister,
R. Struik, J. Vasseur, R. Alexander, RPL: IPv6 Routing Protocol for
Low power and Lossy Networks, RFC 6550, RFC Editor (March 2012).
URL http://www.rfc-editor.org/rfc/rfc6550.txt

[19] N. Modadugu, E. Rescorla, The Design and Implementation of Data-
gram TLS, in: Proceedings of the Network and Distributed System
Security Symposium, NDSS, 2004.

26

Preprint accepted to Elsevier Journal of AdHoc Networks in May 2013

Journal version: http://dx.doi.org/10.1016/j.adhoc.2013.05.003

[20] P. Ning, A. Liu, W. Du, Mitigating DoS Attacks against Broadcast Au-
thentication in Wireless Sensor Networks, ACM Transactions on Sensor
Networks 4 (2008) 1:1–1:35.

[21] R. Jurdak, K. Klues, B. Kusy, C. Richter, K. Langendoen, M. Brünig,
OPAL: A Multiradio Platform for High Throughput Wireless Sensor
Networks, IEEE Embedded Systems Letters 3 (4) (2011) 121–124.

[22] J. Großschädl, S. Tillich, C. Rechberger, M. Hofmann, M. Medwed,
Energy Evaluation of Software Implementations of Block Ciphers under
Memory Constraints, in: Proceedings of the Conference on Design,
Automation and Test in Europe, 2007, pp. 1110–1115.

[23] E. Barker, W. Barker, W. Burr, W. Polk, M. Smid, NIST SP800-57:
Recommendation for Key Management - Part 1: General(Revised),
Tech. rep., NIST (March 2007).

[24] D. A. McGrew, J. Viega, The Galois/Counter Mode of Operation
(GCM), NIST Modes Operation Symmetric Key Block Ciphers.

[25] A. Liu, P. Ning, TinyECC: A Configurable Library for Elliptic Curve
Cryptography in Wireless Sensor Networks, in: Proceedings of the
5th International Conference on Information Processing in Sensor Net-
works, EWSN, 2008, pp. 245 –256.

[26] T. Kothmayr, C. Schmitt, L. Braun, G. Carle, Gathering Sensor Data in
Home Networks with IPFIX, in: Proceedings of the 7th European con-
ference on Wireless Sensor Networks, EWSN, Springer-Verlag, Berlin,
Heidelberg, 2010, pp. 131–146.

27

Preprint accepted to Elsevier Journal of AdHoc Networks in May 2013

Journal version: http://dx.doi.org/10.1016/j.adhoc.2013.05.003

